Valor nutricional del pasto kikuyo Pennisetum clandestinum



Descargar 367,91 Kb.
Página1/6
Fecha de conversión20.03.2017
Tamaño367,91 Kb.
  1   2   3   4   5   6


Valor nutricional del pasto kikuyo (Pennisetum clandestinum Hoechst Ex Chiov.) para la producción de leche en Colombia (Una revisión): I - Composición química y digestibilidad ruminal y posruminal

H J Correa C, M L Pabón R* y J E Carulla F**

Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín
hjcorreac@unal.edu.co
*Laboratorio de Nutrición Animal, Universidad Nacional de Colombia, Sede Bogotá
mlpabonr@unal.edu.co
**Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Bogotá
jecarullaf@unal.edu.co

Resumen

El pasto kikuyo (Pennisetum clandestinum Hoechst Ex Chiov.), no obstante ser la gramínea más utilizada en los sistemas de leche especializada en la zona andina de Colombia, presenta varios limitantes nutricionales que afectan tanto la producción como la calidad composicional de la leche. Entre los limitantes más importantes se destacan el alto contenido promedio de proteína cruda (PC) (20 ± 3.26 % de la materia seca, MS), de nitrógeno no proteico (> 90% de la fracción soluble de la PC), potasio (3.69 ± 0.77 % de la MS) y fibra en detergente neutro (58.1 ± 3.91 % de la MS) así como el bajo contenido promedio de sodio (0.02 ±0.01 % de la MS) y carbohidratos no estructurales (13.4 ± 2.51 % de la MS).

 

El alto contenido de nitratos (5250.9 ± 3153.7 ppm) puede ser la causa de diversos trastornos reproductivos y sanitarios en los animales. Estas características ponen en riesgo la competitividad de los sistemas de producción de leche basados en dicha gramínea.



Palabras clave: Acidos grasos no-saturados, limitaciones nutricionales, magnesio, nitrato, nitrógeno no-proteico

Nutritional value of kikuyu grass (Pennisetum clandestinum Hoechst Ex Chiov.) for milk production in Colombia: A review. I. Chemical composition, ruminal and posruminal digestibility

 

Abstract

 

Kikuyu grass (Pennisetum clandestinum Hoechst Ex Chiov) is the most utilized forage in specialized dairy herds in the Colombian Andes. However, it has nutritional limitations affecting both yield and composition of milk from cows grazing this forage. Nutritional restrictions of kikuyu grass are the high concentrations of crude protein, non protein nitrogen, potassium and neutral detergent fiber and the low content of sodium and non-structural carbohydrates. These nutritional characteristics decrease the competitiveness of dairy production systems based on this forage.



Key words: Magnesium, nitrate, non-protein nitrogen, nutritional limitations, unsaturated fatty acids


Introducción

Durante varias décadas el pasto kikuyo (Pennisetum clandestinum Hoechst. Ex Chiov.), se ha constituido en la base de la alimentación de los sistemas de producción lechera especializada en Colombia (Carulla et al 2004, Consejo Regional de la Cadena Láctea de Antioquia 2001, Laredo y Mendoza 1982, Mila y Corredor 2004, Soto et al 1980). Esto se debe a que su hábito de crecimiento lo hace sumamente agresivo ante la invasión de otras forrajeras (Youngner et al 1971, Fukumoto y Lee 2003), a que es resistente al pisoteo (Miles et al 2000) y responde positivamente a la fertilización orgánica (Mila y Corredor 2004, Orozco 1992) y química (Rodríguez 1999, Urbano 1997). No obstante que esta gramínea se encuentra ampliamente distribuida en la región andina del país y es fácilmente reconocida por técnicos y productores, el conocimiento que existe sobre su calidad nutricional y valor alimenticio, es aún  muy vago.

 

Los sistemas de producción de leche en Colombia respondieron por muchas décadas a las  exigencias que tenían los consumidores nacionales en cuanto a la calidad de la leche y sus derivados. Fue la época dominada por el modelo económico de sustitución de importaciones (FEDEGAN 1999). El paso al modelo aperturista a finales de la década de los ochenta significó un cambio en la percepción de los consumidores y, por ende, en las exigencias del mercado no solamente sobre la calidad de la leche y sus derivados, si no, además, sobre los sistemas de producción en sí mismos, exigiendo que estos fueran más amigables con el ambiente y menos agresivos sobre los animales (FIL/ONUAA 2004). Además de lo anterior, en la actualidad los consumidores exigen que los productos provenientes de la industria láctea sean sanos y nutritivos buscando un mayor contenido de proteína verdadera (Dalgleish 1992) y un menor contenido de grasas saturadas (US FDA 2003). Pero, así mismo, buscan que estos productos aporten nutrientes esenciales para el mantenimiento y el mejoramiento de su salud (Bauman et al 2006, Huth et al 2006). Tal es el caso de los ácidos grasos linoléico conjugados ω-3 y ω-6 (Lawson et al 2001, MacRae et al 2005, Parodi 1999) y algunos aminoácidos y péptidos cuyos beneficios a la salud de los consumidores apenas comienzan a ser reconocidos (National Dairy Council 2006, Sukkar y Bounous 2004). Consecuente con lo anterior y a través de ajustes en los esquemas de pago de la leche a los productores, la industria láctea ha favorecido los componentes más valiosos de la leche, principalmente a la proteína (Mackle et al 1999, Pérez 2000, Rulquin et al 2004).



 

Este tipo de demandas, por otra parte, han tenido eco en la generación de normas que regulan la producción de leche en el país. Tal es el caso del Decreto 616 del 2006 (Ministerio de la Protección Social 2006) y la Resolución 0012 de 2007 del Ministerio de Agricultura y Desarrollo Rural. Sin embargo, en la búsqueda de mercados internacionales, se hace necesario realizar ajustes a estas normas de tal manera que se pueda cumplir con las exigencias de los países a los que van destinados los productos lácteos. Esto implica un cambio en los sistemas de producción de leche en el país.

 

Aunque en Colombia las condiciones del mercado de la leche han cambiado durante las últimas dos décadas (Holmann et al 2003), no ha pasado lo mismo con la forma en que han venido operando los sistemas de producción de leche especializada y este rezago les ha significado en los últimos años, pérdidas en su competitividad frente a un mercado cada vez más exigente. De mantener el statu quo es estos sistemas de producción, va a ser muy difícil que cumplan con los niveles mínimos de calidad que se exige actualmente y, menos aún, con las exigencias futuras. Lo anterior significa que es necesario ajustar los sistemas de producción de leche a las actuales condiciones del mercado, lo que implica reevaluar el manejo que tradicionalmente se le ha venido dando, entre otros componentes, a la alimentación y, dentro de esta, a la base forrajera  – el pasto kikuyo. 



 

Es por ello que el objetivo de este trabajo fue revisar la información existente sobre el valor nutricional y alimenticio del pasto kikuyo para la producción de leche en Colombia a la luz de los retos actuales y futuros que tienen que enfrentar los sistemas de producción de leche en el país.

 

Composición química 

En la tabla 1 se presenta un resumen de los resultados de la composición química de muestras de pasto kikuyo recolectadas en varias regiones de Antioquia (Correa 2006a).




Tabla 1.  Composición química del pasto kikuyo (Pennisetum clandestinum, Hoechst. Ex Chiov.) en muestras recolectadas en varias localidades del departamento de Antioquia, % MS.

 

PC

EE

Cen

FDN

FDA

CNE

Promedio

20.5

3.63

10.6

58.1

30.3

13.4

Máximo

27.1

4.71

13.9

66.9

32.8

17.2

Mínimo

15.4

1.63

8.65

51.7

28.3

8.93

D. E.

3.26

0.82

1.71

3.91

1.20

2.51

C. V., %

15.9

22.6

16.1

6.73

3.95

18.7

n

39.0

27.0

27.0

36.0

19.0

23.0

1 D. E. = Desviación estándar; PC = proteína cruda; EE = extractor etéreo; Cen = cenizas; FDN = fibra en detergente neutro; FDA = fibra en detergente ácido; CNE = carbohidratos no estructurales (CNE = 100 – (PC + EE + FDN + Cen) + PCIDN (Proteína Cruda Insoluble en Detergente Neutro), NRC 2001)


Proteína

 

Proteina cruda

 

El contenido promedio de PC en este pasto (20.5%) es similar al reportado por otros autores en Antioquia (Osorio 1999, Naranjo 2002) pero más alto que el reportado por Apráez y Moncayo (2000) en el departamento de Nariño (11.4 a 15.8%) y más bajo que el hallado por León et al (2007) en el departamento de Cundinamarca (22.9%). Los promedios hallados en Antioquia y Cundinamarca son ligeramente más altos que el requerimiento para vacas Holstein de alta producción al inicio la lactancia (NRC 2001) lo que indica que en general, el pasto kikuyo aporta más proteína que la requerida por los animales a lo largo del periodo productivo (El requerimiento de PC estimado para una vaca de 680 kg, al inicio de la lactancia, produciendo 40 litros de leche con 3.5% de grasa y 3.0% de proteína es de 20.3% (NRC 2001: tabla 14-4). El alto contenido de proteína en este pasto se debe a que normalmente es sometido a intensos programas de fertilización nitrogenada (Carulla 1999, Rodríguez 1999) y es pastoreado a edades más cortas que en el pasado (Laredo y Mendoza 1982).



 

El acceso a fertilizantes nitrogenados de bajo costo ha sido uno de los factores que más ha contribuido a la especialización de los sistemas de producción agropecuarios en el mundo (Hart et al 1997). La ganadería de leche en Colombia no ha escapado a esta tendencia, siendo una práctica común en los sistemas intensivos el uso de fertilizantes nitrogenados, particularmente la urea, luego de cada pastoreo (Soto et al 2005). Esto se debe a los efectos positivos que son visibles a los productores y que hace tan atractiva la aplicación de estos fertilizantes: la fertilización nitrogenada es la forma más generalizada de incrementar la biomasa forrajera y, en consecuencia, de incrementar la carga animal y la producción por hectárea (Urbano 1997). Pero, por otro lado, la fertilización nitrogenada permite el pastoreo a edades más tempranas con lo que la producción por animal se incrementa al consumir pastos de mayor digestibilidad (Caro y Correa 2006, Rodríguez 1999).

 

La fertilización nitrogenada, sin embargo, conlleva a modificaciones en la calidad nutricional de las pasturas, que no son visibles a los productores, pero que generan muchos efectos negativos a nivel productivo (Van Horn et al 1994), reproductivo (Butler 1998, Correa 2002), económico (Vandehaar 1998, Hanigan 2005) y ambiental (Knowlton 1998, Lapierre et al 2005), todos los cuales ponen en riesgo la sostenibilidad y competitividad de los sistemas de producción basados en esta gramínea. Una de tales modificaciones es precisamente el incremento en el contenido de proteína cruda (Orozco 1992, Rodríguez 1999, Soto et al 1980, Urbano 1997) alcanzando ocasionalmente valores superiores al 25.0% de la MS (Montoya et al 2004, Osorio 1999).



 

Como se señaló anteriormente, en los sistemas de lechería especializada es una práctica común la aplicación de nitrógeno después de cada pastoreo. Soto et al (2005) encontraron, sin embargo, que esta práctica no es necesaria cuando se trata de conservar la calidad nutricional del pasto kikuyo. En su trabajo, estos autores dejaron de aplicar N durante cuatro cortes cada 30 días o dos cortes cada 60 días a parcelas de pasto kikuyo sin que observaran diferencias significativas en la calidad nutricional de este pasto, incluida la proteína, cuyo promedio permaneció en 19.04%. Los autores argumentaron que esto podría ser debido a la presencia de nutrientes remanentes en el suelo, que serían suficientes para conservar la composición química de este gramínea. Rodríguez (1999), por su parte, tampoco encontró diferencias en el contenido de PC entre praderas mezcladas con kikuyo y rye grass que fueron fertilizadas y aquellas que no lo eran (p>0.05). En las primeras el contenido de PC fue 18.9  ± 3.4% mientras que en las segundas fue 17.8 ± 2.6%. Estos resultados sugieren la necesidad de revisar los programas de fertilización de las praderas, no solo en términos de la frecuencia de su aplicación, si no además, en las cantidades aplicadas y las fuentes de nutrientes. Esta es la tendencia que han venido mostrando desde hace algunos años los países desarrollados, en los que el impacto ambiental que ha generado la sobrecarga de nutrientes en las praderas, debido al uso indiscriminado de fertilizantes, los ha obligado a revisar los programas de fertilización. Al respecto la tendencia es clara: reducción en los niveles de aplicación de nutrientes al suelo (Castillo 2004, Nielsen y Kristensen 2005, Peyraud 2000).

 

La edad a la cual son pastoreados los potreros de kikuyo, por su parte, también ha alterado la calidad nutricional de este pasto. Es bien sabido que en la medida en la que se incrementa la edad de rebrote, menor es la digestibilidad y, por ende, el valor nutricional de los pastos (Lyons et al 1997), incluyendo al kikuyo (Caro y Correa 2006, Fukumoto y Lee 2003, Kamstra et al 1966, Rodríguez 1999). Es por esta razón que el pastoreo a edades cada vez menores, es la alternativa que encuentran los productores para compensar las mayores demandas nutricionales y energéticas del ganado lechero, a medida que se ha incrementado su valor genético para la producción de leche.



 

Contenido de aminoácidos

 

Parra (2000) evaluó el contenido de aminoácidos en muestras de pasto kikuyo recolectadas en Antioquia a diferentes edades de corte (30, 40, 50 y 60 días) y que presentaban diferente contenido de PC (Tabla 2). En su trabajo se hizo evidente un incremento en la concentración de los aminoácidos a medida que se incrementó el contenido de PC en el pasto. El análisis del perfil de aminoácidos esenciales de esta gramínea, indica que la calidad de la proteína de este pasto es menor que el que se ha reportado para la proteína bacteriana que se produce en el rumen (Clark et al 1992). Así, los aminoácidos esenciales con menor concentración relativa en el pasto kikuyo son en su orden, lisina, metionina, isoleucina, treonina, leucina, arginina y valina. Esto los convertiría en los aminoácidos más limitantes si se considera que una fracción de la proteína de este pasto escapa a la degradación ruminal y es digerida en el tracto post-ruminal (Caro y Correa 2006, Monsalve 2004). La fenilalanina y la histidina son los únicos aminoácidos que superan los valores encontrados en la proteína bacteriana del rumen.




Tabla 2. Contenido de proteína cruda (PC) y de aminoácidos en muestras de pasto kikuyo recolectadas en Antioquia a diferentes edades de corte1.

 

Edad de corte, días

30

40

50

60

PC, % de la MS

 

17.8

14.4

14.4

12.2

Aminoácidos, % de la MS

 

 

Ala

1.26

0.91

0.87

0.77

Arg

0.83

0.60

0.54

0.50

Asp

2.44

2.20

2.50

1.80

Cys

0.20

0.16

0.16

0.14

Glut

1.84

1.34

1.30

1.17

Gly

0.78

0.59

0.54

0.50

His

0.39

0.30

0.31

0.25

Ile

0.75

0.55

0.51

0.47

Leu

1.27

0.91

0.78

0.78

Lys

0.90

0.67

0.61

0.57

Met

0.31

0.23

0.23

0.20

Phe

0.95

0.77

0.73

0.63

Pro

0.99

0.72

0.72

0.78

Ser

0.83

0.72

0.71

0.60

Thr

0.77

0.60

0.59

0.52

Val

1.07

0.84

0.86

0.71

1Datos tomados de Parra (2000)

El contenido de aminoácidos del pasto kikuyo parece ser muy similar al del rye grass, excepto en que el contenido de metionina y cisteína son 68 y 57%, más bajos (Reeves et al 1996). Dennison y Phillips (1983), al evaluar el contenido de aminoácidos de los productos de la digestión en ensayos in vitro, estimaron que, en el caso del pasto kikuyo, la histidina es el aminoácido más limitante, seguido de lisina y metionina. Esto contrasta con el hecho de que la histidina tenga una concentración superior a la de la proteína microbiana y como lo  señalan Tedeschi et al (2001), en el caso de los forrajes, el perfil de aminoácidos de la proteína que escapa a la degradación ruminal es similar al de la proteína en el pasto. Estos autores compararon el perfil de aminoácidos de cinco residuos (forraje original, residuo en buffer de borato-fosfato (BPR), residuo de fibra en detergente neutro con  (FDN+) y sin sulfito de sodio (FDN-) y residuo en fibra en detergente ácido (FDA)) de ocho forrajes y seis leguminosas de origen tropical y de zona templada y no encontraron diferencias en la composición de aminoácidos en el residuo en BPR, en comparación a la composición de los forrajes originales. Ahora, dado que el residuo en BPR se asume que contiene la proteína que escapa a la degradación ruminal (Sniffen et al 1992), Tedeschi et al (2001) sugieren que la composición de aminoácidos del forraje original puede ser utilizada como un indicador del perfil de aminoácidos de la proteína no degradada en rumen. De esta manera, teniendo en cuenta el bajo perfil de aminoácidos esenciales en el pasto kikuyo comparado con el de la proteína microbiana, no sería aventurado afirmar que es más provechoso para el animal hospedero que la proteína de este pasto se degradara en el rumen y se transformara en proteína microbiana, reduciendo el escape de la misma hacia el duodeno (Correa 2006a). Por el contrario, Marais (2001) sugiere reducir la degradación de las proteínas en el rumen y, en consecuencia, las pérdidas de aminoácidos seleccionado plantas con alto contenido de aminoácidos azufrados ya que estos, al formar puentes disulfuro, incrementan la estabilidad de las proteínas y reducen su degradabilidad.

 

Fracciones de proteína

 

En la caracterización de la proteína de los alimentos para rumiantes se han utilizado tanto métodos in vivo, como métodos in situ e in vitro (Schwab et al 2003) apareciendo diversas fracciones, dependiendo del método empleado. Así, con el método in situ (Ørskov y McDonald 1979) se pueden discriminar hasta tres fracciones, en tanto que con el método in vitro adoptado por el modelo de Carbohidratos y Proteínas Netas de Cornell (Sniffen et al 1992) se obtienen cinco fracciones.



 

Método in situ

 

El método in situ, el más ampliamente utilizado para evaluar la cinética ruminal de las proteínas (Bach et al 1998, Michalet-Doreau y Noziére 1999, Schwab et al 2003), ha sido incluido en el modelo desarrollado por el Consejo Nacional de Investigaciones de los Estados Unidos para ganado lechero (NRC 2001) y, así mismo, ha sido adoptado como el método de elección en diversos países (Schwab et al 2003), incluido Colombia (Correa 2006a). Las tres fracciones de la proteína que son identificadas a través de este método incluyen a la fracción soluble (fracción a), la fracción potencialmente degradable (fracción b) y la fracción no degradable en el rumen (fracción c).



 

Fracción soluble (fracción a)

 

En el método in situ, la fracción a corresponde a la fracción proteica que rápidamente desaparece de la bolsa de nilón (NRC 2001). Se presume que esta fracción es rápida y completamente degradada en el rumen (Hedqvist 2004, NRC 2001, Schwab et al 2003) e incluye al nitrógeno no protéico (NNP) y una pequeña fracción de proteínas de alta solubilidad (NRC 2001, Schwab et al 2003). Las proteínas asociadas a partículas de alimento que logran escapar a través de los poros de las bolsas de nilón también son incluidas en esta fracción (Schwab et al 2003). Estas últimas, sin embargo, son el resultado de un error metodológico asociado al tamaño de la partícula y que, en última instancia, conducen a la sobreestimación de la fracción soluble (Emmanuele y Staples 1988). En promedio, el 31.2% de la PC del pasto kikuyo esta representado por la fracción a con una variación que oscila entre el 18.9 y el 42.9 % (tabla 3).  




Tabla 3.  Fracciones de la proteína cruda de muestras de pasto kikuyo recolectadas en Antioquia estimadas por el método in situ.

 

Fracciones de la PC

a1

b

c

Promedio

31.2

62.5

12.7

Máximo

42.9

72.2

19.5

Mínimo

18.9

44.9

7.07

D. E.

5.21

8.50

4.66

C. V., %

16.7

13.6

36.7

1a = fracción soluble; b = fracción potencialmente degradable; c = fracción no degradable; D. E. = Desviación Estándar.

  1   2   3   4   5   6


La base de datos está protegida por derechos de autor ©absta.info 2016
enviar mensaje

    Página principal