Resume mauricio Cabrera Ríos



Descargar 266,47 Kb.
Página6/6
Fecha de conversión20.03.2017
Tamaño266,47 Kb.
1   2   3   4   5   6

References the author´s papers in Refereed Journals



V. García Loera, J. Mireles Díaz, O. Chacón Mondragón, and M. Cabrera-Ríos, Setting the Processing Parameters in Injection Molding through Multiple Criteria Optimization: A Case Study, IEEE Transactions on Systems, Man & Cybernetics, Part C: Applications & Reviews 38:5 (2008) 710-715
1. Célio Fernandes, António J. Pontes,Júlio C. Viana,A. Gaspar-Cunha, Using Multi-objective Evolutionary Algorithms in the Optimization of Polymer Injection Molding, Advances in Soft Computing, Applications of Soft Computing, Springer (2009) (book)
W. Geerdes, A. Cavazos and M. Cabrera-Ríos, Temperature Prediction in Hot Strip Mill: Empirical, Physics-Based and Semiphysical Models, Journal of Manufacturing Science and Engineering 130:1 (2008) 014501/1 – 014501/5
2. V Colla, M Vannucci, A Dimatteo, Diagnosis of the instability of the cooling behaviour of flat steel products through parametric characterisation, neural networks and statistics, ISA Transactions, 49:2 (2010) 235-243

3. M. Chandrasekaran, M. Muralidhar, C. Murali Krishna and U. S. Dixit, Application of soft computing techniques in machining performance prediction and optimization: a literature review, The International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-009-2104 (Science Citation Index)


M.G. Villarreal Marroquín, C.E. Castro, J.M. Castro, and M. Cabrera‑Ríos, Using data clustering to aid the solution of multiple criteria optimization problems through data envelopment analysis, Intelligent Data Analysis – An International Journal 12:1 (2008) 89-101
4. S. Samoilenko, K-M Osei-Bryson, Determining sources of relative inefficiency in heterogeneous samples: Methodology using Cluster Analysis, DEA and Neural Networks, European Journal of Operational Research, 206:2 (2010) 479-487
M.A. Salazar Aguilar and M. Cabrera-Ríos, Statistical Characterization and Optimization of Artificial Neural Networks in Time Series Forecasting: The One‑Period Forecast Case, Computación y Sistemas, 10:1 (2006) 69-81
5. K.P.M. Madhugeeth, H.L. Premarathna, Forecasting Power demand Using Artificial Neural Networks for Sri Lankan Electricity Power System, IEEE Industrial and Information Systems 2008, December 8 -10, 2008, Kharagpur

6. K.P.M. Madhugeeth, H.L. Premarathna, Forecasting Power demand Using Artificial Neural Network for Sri Lankan Electricity Power System, WCSET 2008: World Congress on Science, Engineering and Technology, September 01, 2008, Singapore


C.E. Castro, M. Cabrera-Ríos, B. Lilly, and J.M. Castro, Optimization and Analysis of Variability in Injection Molding, Journal of Polymer Engineering and Science, 47:4 (2007) 400-409
7. J-R Shie, Optimization of injection-molding process for mechanical properties of polypropylene components via a generalized regression neural network, Polymers for Advanced Technology, DOI 10.1002/pat.976 (2007)  (Science Citation Index)
M. Rabinovich, K. Olsavsky, M. Cabrera-Ríos, and J.M. Castro, Sheet molding compound (SMC) characterization using spiral flow, Journal of Applied Polymer Science, 109:4 (2008) 2465-2471

8. NEJ Olsson, TS Lundström, K. Olofsson, Design of experiment study of compression moulding of SMC, Plastics, Rubber and Composites, 38:9-10 (2009) 426-431(6)

9. O Guiraud, PJJ Dumont, L Orgéas, J-P Vassal, T-H Le ,D Favier, Towards the simulation of mould filling with polymer composites reinforced with mineral fillers and short fibres, International Journal of Material Forming (2009)
M. Cabrera-Ríos and J.M. Castro, An economical way of using carbon fibers in sheet molding compound compression molding for automotive applications, Journal of Polymer Composites, 27:6, (2006), 718-722
10. Palmer J et al. Sheet moulding compound (SMC) from carbon fibre recyclate. Composites: Part A (2010), doi:10.1016/ j.compositesa.2010.05.005 (Science Citation Index)
M. Cabrera-Ríos and J.M. Castro, The Balance between Durability, Reliability, and Affordability in Structural Composites Manufacturing, Journal of Polymer Composites, 28:2 (2006), 233-240
11. J. Zhou, L-S. Turng, Adaptive Multiobjective Optimization of Process Conditions for Injection Molding using a Gaussian Process Approach, Advances in Polymer Technology 26:2 (2007) 71-85 (Science Citation Index)

12. J. Zhou, L-S. Turng, Process optimization of injection molding using an adaptive surrogate model with Gaussian process approach, Journal of Polymer Engineering and Science 47:5 (2007) 684-694 (Science Citation Index)

13. J. Zhou, L-S. Turng, A. Kramschuster, Single and Multi Objective Optimization for Injection Molding using Numerical Simulation with Surrogate Models and Genetic Algorithms, International Polymer Processing 21 (2006) 1-12 (Science Citation Index)
J.M. Castro, M. Cabrera-Ríos, and C.A. Mount-Campbell, Modelling and Simulation in Reactive Polymer Processing, Modelling and Simulation in Materials Science and Engineering, 12 (2004) S121-S149
14. Chung-Neng Huang,Chong-Ching Chang, Determination of Optimal Manufacturing Parameters for Injection Mold by Inverse Model Basing on MANFIS, Journal of Intelligent Learning Systems and Applications, 2:1 (2010) 28-35

15. Chen, Ting; Zhang, Chong; Li, Liqing; Chen X; Simulating the drawing of spunbonding nonwoven process using an artificial neural network technique Journal of the Textile Institute 99:5 (2008) 479-488 (Science Citation Index)

16. Igreja, Rui, Numerical Simulation of the Filling and Curing Stages in Reaction Injection Molding, using CFX, MS Thesis, Universidade de Aveiro, Departamento de Engenharia Mechanica (2007)

17. Chen, Ting; Li, Liqing; Koehl, Ludovic; Vroman, Philippe; Zeng, Xianyi, A soft computing approach to model the structure-property relations of nonwoven fabrics Journal of Applied Polymer Science 103:1 (2007) 442-450 (Science Citation Index)

18. Ting Chen, Liqing Li and Xiubao Huang, Predicting the fibre diameter of melt blown nonwovens: comparison of physical, statistical and artificial neural network models Modelling Simul. Mater. Sci. Eng. 13 (2005) 575-584 (Science Citation Index)

19. Ting Chen, J. Wang, X.B. Huang, Artificial neural network modeling for predicting melt blowing processing, J. Appl. Polym. Sci, 99:1 (2006) 424-429 (Science Citation Index)

20. Ting Chen, J. Wang J, X.B. Huang, Artificial neural network modeling for predicting melt-blowing processing , J. Appl. Polym. Sci, 101 (2006): 4275-4280 (Science Citation Index)
M. Cabrera-Ríos, J.M. Castro, and C.A. Mount-Campbell, Multiple Quality Criteria Optimization In Reactive In-Mold Coating With A Data Envelopment Analysis Approach II: A Case With More Than Three Performance Measures, Journal of Polymer Engineering, 24:4 (2004) 435-450
21. Chung-Neng Huang,Chong-Ching Chang, Determination of Optimal Manufacturing Parameters for Injection Mold by Inverse Model Basing on MANFIS, Journal of Intelligent Learning Systems and Applications, 2:1 (2010) 28-35
C. E. Castro, M. Cabrera-Ríos, B. Lilly, J.M. Castro, and C.A. Mount-Campbell, Identifying The Best Compromises Between Multiple Performance Measures In Injection Molding (IM) Using Data Envelopment Analysis (DEA), Journal of Integrated Design & Process Science, 7, (2003). 77-87
22. Chung-Neng Huang,Chong-Ching Chang, Determination of Optimal Manufacturing Parameters for Injection Mold by Inverse Model Basing on MANFIS, Journal of Intelligent Learning Systems and Applications, 2:1 (2010) 28-35
M. Cabrera-Ríos, J.M. Castro, and C. A. Mount-Campbell, Multiple Quality Criteria Optimization In In-Mold Coating (IMC) With A Data Envelopment Analysis Approach, Journal of Polymer Engineering, 22:5, (2002). 305-340
23. Chung-Neng Huang,Chong-Ching Chang, Determination of Optimal Manufacturing Parameters for Injection Mold by Inverse Model Basing on MANFIS, Journal of Intelligent Learning Systems and Applications, 2:1 (2010) 28-35

24. Emrouznejad, A. Parker, B. and G. Tavares (2008): Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEAJournal of Socio-Economics Planning Science, 42(3) 151-157 (Science Citation Index)


M.Cabrera-Ríos, M., K.S. Zuyev, X. Chen, J.M. Castro, and E.J. Straus, Optimizing Injection Gate Location and Cycle Time for the In-Mold Coating (IMC) Process, Polymer Composites 23:5, (2002). 723-738
.. HJ Streitberger, KF Dössel, G Wilke, S Jacob, Coatings for Plastic Parts, Automotive Paints and Coatings, Second Edition, Wiley (2008)

25. L.S. Turng and M. Peic, Proceedings of the Institution of Mechanical Engineers. Pt.B. Journal of Engineering Manufacture. 216:B12, (2002) 1523-32 (Science Citation Index Expanded)

26. X. Chen, N. Bhagavatula and J. M. Castro, Predicting fill patterns for the in-mould coating process for thermoplastic parts, Modelling Simul. Mater. Sci. Eng., 12 (2004) S267-S287   (Science Citation Index)
K.S. Zuyev, X. Chen, M. Cabrera- Ríos, J.M. Castro, and E.J. Straus, In-Mold Functional Coatings of Thermoplastic Substrates: Process Modeling, Journal of Injection Molding Technology, 5:2, (2001). 80-97
.. M Grujicic, V Sellappan, MA Omar, N Seyr, A Obieglo, M Erdmann, J Holzleitner, An Overview of the Polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components, Journal of Materials Processing Technology, 197:1 (2008) 363-373

.. M Koc, T Ozel, Polymer Micro-Molding/Forming Processes, Micro-Manufacturing: Design and Manufacturing of Microproducts (BOOK), Wiley (2011)

.. RH Ryu, SH Lim, JI Jeong, D Shin, S Jang, HJ Yim, KS Lee, Theoretical and Experimental Analysis of Material Deformation by Microcontact, International Journal of Precision Engineering an Manufacturing 10:2 (2009) 111-116

.. FA Solomon, OI Okoli, Experimental Evaluation of Co-Infusion as a Viable Method for In-Mold Coating of Composite Components, Journal of Reinforced Plastics and Composites 28: 16 (2009) 1975-1986

27. C.A. Puentes, O.I. Okoli, Y.B. Park, Determination of effects of production parameters on the viability of polycarbonate films for achieving in-mold decoration in resin infused composite components, Composites: Part A (2009) doi: 10.1016

28. F.A. Solomon, O.I. Okoli, Jounal of Reinforced Plastics and Composites (2008) doi: 10.1177/0731684408090714

29. J.C. Love and V. Goodship, Rapra Review Reports: In-mould decoration of plastics, Rapra Technology (2006), pp. 28 (book)

30 P. Chiu and O. I. Okoli, In-mold Coating of Composites Manufactured by the Resin Infusion between Double Flexible Tooling Process by Means of Co-infusion, Journal of Reinforced Plastics and Composites (2006) (Science Citation Index Expanded)

31. P. Chiu, In-Mold Coating of Composites Manufactured with the Resin Infusion between Double Flexible Tooling Process by Means of Co-Infusion, PhD Dissertation, Florida State University (2004)
M. Cabrera-Ríos, C. A. Mount-Campbell, and S.A. Irani, An Approach to the Design of a Manufacturing Cell under Economic Considerations, International Journal of Production Economics, 78:3, (2002). 223-237
.. S Oliveira, JFF Ribeiro, SC Seok, A spectral clustering algorithm for manufacturing cell formation, Computers & Industrial Engineering, 57:3 (2009) 1008-1014
32. M. Saidi-Mehrabad, V.R. Ghezavati, Designing Cellular Manufacturing Systems under Uncertainty, Journal of Uncertain Systems, 3:4, (2009) 315-320

33. W Hachicha, F Masmoudi, M Haddar, Combining axiomatic design and designed experiments for cellular manufacturing systems design framework, International Journal of Agile Systems and Management, 33: 3-4 (2008) 306-319

34. F Mazmoudi, W Hachicha, M Haddar, A new combined framework for the cellular manufacturing system design, Proceedings of the International Conference in Manufacturing Engineering and Engineering Management, London, UK (2008)

35. A Ahi, MB Aryanezhad, B Ashtiani, A Makui, A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method. Computers and Operations Research (2009), doi: 10.1016/j.cor.2008.02.012 (Science Citation Index)

36. C-C Chen, Chuan M-C, Integrating the Kano model into a robust design approach to enhance customer satisfaction with product design, International Journal of Production Economics 114 (2008) 667-681 (Science Citation Index)

37. JPC Kleijnen, SM Sanchez, TW Lucas, TM Cioppa, A User’s Guide to the Brave New World of Designing Simulation Experiments, INFORMS Journal on Computing 17:3 (2003) 263-289 (Science Citation Index)

38. RRS Inman, DES Blumenfeld, NS Huang, JS Li, Designing production systems for quality: research opportunities from an automotive industry perspective, International Journal of Production Research, 41:9 (2003) 1953-1971 (Science Citation Index)

39. M Chambers and CA Mount-Campbell, Process optimization via neural network metamodeling, International Journal of Production Economics, 79:2 (2002) 93-100 (Science Citation Index)

40. M.Solimanpur, P. Vrat and R. Shankar, A heuristic to minimize makespan of cell scheduling problem, International Journal of Production Economics, 88:3 (2004) 231-241 (Science Citation Index)


41. SM Sanchez, F Moeeni and PJ Sanchez, So many factors, so little time...Simulation experiments in the frequency domain, International Journal of Production Economics, (2005) (Science Citation Index)

42. A Carvalho Alves, Projecto Dinamico de Sistemas de Producao Orientados ao Producto,PhD Dissertation, Universidade do Minho (Portugal), (2007)

43. FA de Oliveira, A gestão baseada em atividades (abm) aplicada em ambientes celulares: uma abordagem metodológica, PhD Dissertation, Universidade Federal de Itajubá (Brasil), (2003)

References to the Author´s Papers in Refereed Congress Proceedings
N. Bhagavatula, M. Cabrera Ríos, and J.M. Castro, In-Mold Coating of Thermoplastic Substrates: Further Developments, Annual Technical Conference of the Society of Plastics Engineers (ANTEC) 2004, Chicago, IL., May 19, Session W20
44. Emrouznejad, A. Parker, B. and G. Tavares (2008): Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA Journal of Socio-Economics Planning Science, 42(3) 151-157 (Science Citation Index)
M. Cabrera-Ríos and J.M. Castro, Multiple Criteria Optimization Studies in Sheet Molding Compound (SMC), ANTEC 2003, Nashville, Tennessee, May 6, Session T24, 798-802
45. Emrouznejad, A. Parker, B. and G. Tavares (2008): Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEAJournal of Socio-Economics Planning Science, 42(3) 151-157 (Science Citation Index)
C.E. Castro, N. Bhagavatula, M. Cabrera-Ríos, J.M. Castro, and B. Lilly, Identifying The Best Compromises Between Multiple Performance Measures In Injection Molding (IM) Using Data Envelopment Analysis, ANTEC 2003, Nashville, Tennesee, May 5, Session M4, 377-381
46. Emrouznejad, A. Parker, B. and G. Tavares (2008): Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEAJournal of Socio-Economics Planning Science, 42(3) 151-157 (Science Citation Index)

47. A. Gaspar-Cunha, J.C. Viana, Using Multi-Objective Evolutionary Algorithms to Optimize Mechanical Properties of Injection Molded Parts, International Polymer Processing Journal, 10, pp. 274-285, 2005. (Science Citation Index)

48. C. Fernandes, J.C. Viana, A.J. Pontes, A. Gaspar-Cunha, Setting of the Operative Processing Window in Injection Moulding Using a Multi-Optimization Approach: Experimental Assessment, Proceedings of the 11th ESAFORM2008 conference on material forming. Lyon, France.23, 24 and 25 april 2008, Paper 567
M. Cabrera-Ríos and J.M. Castro, The Balance Between Durability, Reliability, and Affordability in Structural Composites Manufacturing: Preliminary Results, Technical Paper 2003-01-0459, Reliability and Robust Design in Automotive Engineering, 2003 SAE World Congress Book SP-1736, March 2003
49. Palmer J et al. Sheet moulding compound (SMC) from carbon fibre recyclate. Composites: Part A (2010), doi:10.1016/ j.compositesa.2010.05.005
M.Cabrera-Ríos, K.S. Zuyev, X. Chen, J.M. Castro, and E.J. Straus, Optimizing Injection Gate Location and Cycle Time for the In-Mold Coating (IMC) Process, ANTEC 2001, Dallas, TX, 2001, Session W9, Paper 0195
50. LS Turng, M Peic, and DK Bradley, Process Simulation and Optimization for Injection Molding Experimental Verifications and Field Applications, Journal of Injection Molding Technology, June (2002)

51. X Chen, JM Castro, Numerical Simulation of the In-Mold Coating Process for Injection Molded Thermoplastic Parts, Journal of Injection Molding Technology, December (2002)



References to the Author´s Theses
M. Cabrera-Ríos, Multiple criteria optimization studies in reactive in‑mold coating, Disertación Doctoral, Dept. of Industrial, Welding and Systems Engineering, The Ohio State University, 2002.
52. J Hau and BR Bakshi, Life Cycle Environmental and Economic Analysis for Engineering Decision Making - A Hybrid Exergetic Approach, Proceedings of the 4th International Life Cycle Assessment and Life Cycle Management conferences, 2004

53. L M Seiford, A Cyber-Bibliography for Data Envelopment Analysis (1978-2005), http://ioe.engin.umich.edu/people/fac/seiford.html




Mauricio Cabrera- Ríos, mauricio.cabrera1 @upr.edu
1   2   3   4   5   6


La base de datos está protegida por derechos de autor ©absta.info 2016
enviar mensaje

    Página principal