Priority 1 Projects Open for ttc top-up Call (FP6-2006-ttc-tu-priority 1) – sustainable energy

Descargar 296,99 Kb.
Fecha de conversión10.04.2017
Tamaño296,99 Kb.
1   2   3   4
Federal Institute for Geosciences and Natural Resources (DE)

  • Bureau de Recherches Geologiques et Minieres (FR)

  • Geological Survey of Denmark and Greenland (DK)

  • Institute of Petroleum Engineering at Heriot-Watt University (UK)

  • Institut Français du Pétrole (FR)

  • Department of Earth Science and Engineering, Imperial College London (UK)

  • Norwegian Institute for Water Research (NO)

  • L'Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (IT)

  • International Research Institute of Stavanger (NO)

  • INTEF Petroleum Research (NO)

  • Netherlands Organisation for Applied Scientific Research (NL)

  • Fluid Geochemistry Group at the Università di Roma “La Sapienza” (IT)

  • The Network focus is on the geological storage of CO2 as a green house gas mitigation option. It has several objectives: To form a durable and complimentary partnership comprising of a critical mass of key European research centres whose expertise and capability becomes increasingly mutually interdependent. To maintain and build upon the momentum and world lead that Europe has on geological CO2 sequestration and project that lead into the international arena. To improve efficiency through re-alignment of national research programmes, prevention of duplication of research effort, sharing of existing and newly acquired infrastructure and IPR. To identify knowledge gaps and formulate new research projects and tools to fill these gaps. To provide the authoritative body for technical, impartial, high quality information on geological storage of CO2 , and in so doing enable public confidence in the technology, participate in policy, regulatory formulation and common standards.

    Solar Steam Reforming of Methane Rich Gas for

    Synthesis Gas Production

    Proyecto Específico de Investigación Focalizada (STREP)

    Institut für Technische Thermodynamik (Alemania)
    Stephan MOELLER

    1. Institut für Technische Thermodynamik (DE)

    2. Chemical Process Engineering Research Institute, Aerosol and Particle Technology Laboratory (GR)

    3. Weizmann Institute of Science (IL)

    4. Swiss Federal Institute of Technology Zurich (CH)

    5. Johnson Matthey Fuel Cells Ltd. (UK)

    6. Hexion B.V. (NL)

    7. Society of Petroleoum Engineers (NL)

    8. Energy research Centre of the Netherlands (NL)

    9. Solar Heat and Power S.p.A. (IT)

    10. Region Basilicata (IT)

    The main purpose of this project is to develop and operate an innovative 400‑kWth solar reformer for several applications, such as hydrogen production or electricity generation. The new solar reformer will be more compact and more cost-effective than the previous SOLASYS reformer. Various catalyst systems will be investigated for that purpose, and the behavior of the porous absorber will be simulated regarding transport and reaction. The front flange holding the window, the ceramic absorber, and the vessel will be redesigned. Thermodynamic and thermo-chemical analyses will be performed to support the system design phase. The existing solar test facility will be modified to operate the solar reformer with gas mixtures representative of a variety of feedstock possibilities. New operating strategies will be evaluated. The results will support the pre-design of a 1-MWth prototype plant in Southern Italy and the conceptual layout of a commercial 50-MWth reforming plant. Assessments on potential markets and environmental, socio-economic and institutional impacts complete this project.

    The birth of a EUropean Distributed EnErgy

    Partnership that will help the largescale implementation of distributed energy resources in


    Proyecto Integrado

    Gaz de France (Francia)
    Etienne GEHAIN

    39 partners from 9 countries of the EU, 5 accessing states and Turkey. The partners are of various types (energy operators, industrial manufacturers, research centers, academics, professionals and national agencies), and gather various competences (from the development of electric equipments to the analysis of the energy markets mechanisms).

    group of eight leading European energy utilities have joined forces to remove, during the next five years, most of the technical and non-technical barriers which prevent a massive deployment of distributed energy resources (DER) in Europe. In partnership with manufacturers, research organisations, professionals, national agencies and a bank, they follow a demand-pull rather than technology-push approach. This new approach will provide five "fast-tracks options" to speed up the large-scale implementation of DER in Europe, by defining five market segments which will benefit from DER solutions, and fostering the R&D required to adapt DER technologies to the demands of these segments.

    Advanced lithium energy storage systems based

    on the use of nano-powders and nano-composite



    Red de Excelencia

    Université de Picardie Jules Verne (Francia)
    Jean-marie TARASCON

    1. University of Kent (UK)

    2. Saint Andrews University (UK)

    3. Institut de Chimie de la Matière Condensée (FR)

    4. National Institute of Chemistry (SI)

    5. Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques (FR)

    6. Delft University (NL)

    7. Université de Provence (FR)

    8. Max Planck Institute (DE)

    9. Paul Scherrer Institute (CH)

    10. Institute de Ciencia de Materials de Barcelona (ES)

    11. La Sapienza (IT)

    12. Université de Paul Sabatier Toulouse (FR)

    13. Laboratoire de Réactivité et Chimie des Solides (FR)

    14. Uppsala University (SE)

    15. Cordoba University (ES)

    16. Warsaw University of Technology (PL)

    To restructure European research in the field of batteries in order to: (1) Handle the challenges

    pertaining to the 21st century energy storage

    (dictated by a forever mobile world) (2)

    Bring Europe back to the european forefront

    in the field of Li-based energy storage

    Integration of Renewable Energy Sources and

    Distributed Generation into the European Electricity Grid

    Acción de Coordinación

    Institut Fuer Solare Energieversorgungstechnik Verein An Der Universitaet Kassel E.V. (Alemania)
    Juergen SCHMID

    1. Energieonderzoek Centrum Nederland (NL)

    2. Institute Of Communication And Computer Systems Of The National Technical University Of Athens (GR)

    3. Commissariat A L'energie Atomique (FR)

    4. Centro Universitario De Investigacion En Distribucion Activa Y Electrotecnologias (ES)

    5. Tekes (FI)

    6. Fundacion Labein (ES)

    7. Iberdrola S.A. (ES)

    8. Enersearch Ab (SE)

    To extend cluster activities in such a way that a real European added value by mobilising research will be obtained. A systematic exchange of information by improving links to relevant research, to regulatory bodies and to policies and schemes on the European, the national, the regional and the international level. Set-up of strategic actions such as trans-national co-operation, the organization and a co-ordination of common initiatives on standards, testing procedures and the establishment of common education. 3. Identification of the highest priority research topics in the field of integration and formation of appropriate realization schemes. The establishment of an expert-group covering important cross-cutting areas such as power-quality, ICT/IST, laboratory experiments est.) The formation of a group of contact persons to national, regional and international policy). Set-up of a full data- and information-exchange system with links to national, regional and international information systems)

    Improved Building Integration of PV by using Thin Film Modules in CIS Technology


    Proyecto Específico de Investigación Focalizada (STREP)

    Zentrum für Sonnenenergie und Wasserstoff-Forschung (Alemania)
    Schott THOMAS

    1. Zentrum Fuer Sonnenenergie Und Wasserstoff Forschung, Baden Wuertemberg (DE)

    2. Commission Of The European Communities Directorate General Joint Research Centre (BE)

    3. Politechnika Warszawska (PL)

    4. Tyco Electronics Uk Ltd (UK)

    5. Saint Gobain Recherche Sa (FR)

    6. Solar Engineering Decker & Mack Gmbh (DE)

    7. Politechnika Wroclawska (PL)

    8. Ove Arup & Partners Limited (UK)

    9. Permasteelisa S P A (IT)

    10. Wuerth Solar Gmbh And Co Kg (DE)

    11. Swiss Sustainable Systems Ag (CH)

    12. Shell Solar Gmbh (DE)

    13. Technische Universitaet Dresden (DE)

    The aim of this project is to improve the potential for fitting copper-indium-diselenide (CIS) photovoltaic technology to new and existing buildings. Photovoltaic roof tiles, overhead glazing and façade elements based on CIS materials will be developed, including innovative connection and mounting techniques. The building elements produced in the project will undergo characterisation and performance tests, including thermal behaviour, reliability and outdoor exposure. The project will also address the architectural and aesthetic aspects of building integrated photovoltaics, including a European market survey on PV roof tiles.

    Strengthen the European Photovoltaic Sector and support to establish a PV Technology Platform

    (PV SEC)

    Acción de Coordinación

    Photovoltaic Industry Association
    Michel VIAUD

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Novel Efficient Solid Storage for Hydrogen


    Proyecto Integrado

    National Center of Scientific Research « Demokritos » (Grecia)
    Thanos STUBOS

    1. University of Salford (UK)}

    2. GKSS (DE)

    3. National Research Center for the Physical Sciences DEMOKRITOS (GR)

    4. Air Liquide S.A. (FR)

    5. Commission of the European Communities (BE)

    6. Stockholms Universiteit (SE)

    7. Institutt for Energiteknikk (NO), Universität Freiburg (CH)

    8. The University of Birmingham (UK)

    9. Vrije Universiteit Amsterdam (NL)

    10. Centre National de la Recherche Scientifique (FR)

    11. DaimlerChrysler AG (DE)

    12. University of Iceland (IS)

    13. Johnson Matthey plc (UK), Forschungszentrum Karlsruhe GmbH (DE)

    14. Max Planck Gesellschaft zur Förderung der Wissenschaften (DE)

    15. Danmarks Tekniske Universitet (DK)

    16. Orta Dogu Teknik Universitesi (TR)

    17. Instituto Nacional de Engenharia, Tecnologia e Inovacao (PT)

    18. Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (DE)

    19. Technische Universiteit Delft (NL)

    20. Southwest Research Institute (US)

    NESSHY attempts to apply a holistic multidisciplinary approach, addressing key issues related to hydrogen storage in solid materials such as new materials, novel analytical and characterisation tools and measurement techniques, storage methods and fabrication processes, ab initio and phenomenological modelling. Special attention is paid to the enhancement of energy efficiency, storage kinetics, operating conditions and safety aspects of produced materials and to the tank design. NESSHY aspires to develop novel materials, storage methods and fabrication processes that provide the energy density and the charge/discharge storage/restitution rates necessary for mobile applications with spin-offs in stationary systems. The final aim of the project is to identify the most promising solid storage solutions for such applications. The envisaged objectives cover porous storage systems, regenerative hydrogen stores (such as the borohydrides) and solid hydrides having reversible hydrogen storage and improved gravimetric storage performance.
    A series of material samples, synthesis routes and characterization data, novel simulation and characterization methods/tools and tank development, testing and evaluation reports are foreseen. In addition, a Virtual Solid H-Storage Laboratory will be established for the first time in Europe . Such results should illuminate the future perspectives of hydrogen storage for transport and stationary applications and assist decision makers and stakeholders on the road to hydrogen economy.

    Flexible Electricity Networks to Integrate the eXpected 'energy evolution'


    Proyecto Integrado

    IBERDOLA (España)
    Pedro MARTINEZ

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Cost Assessment for Sustainable Energy Systems


    Acción de Coordinación

    Fondazione Eni Enrico Mattei (Italia)

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Network of DER Laboratories and Pre-Standardisation


    Red de Excelencia

    Institut für Solare Energieversorgungstechnik (Alemania)
    Thomas DEGNER

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Biomass Fluidised Bed Gasification with in situ Hot Gas Cleaning

    (AER-Gas II)

    Proyecto Específico de Investigación Focalizada (STREP)

    Centre for Solar Energy and Hydrogen Research (Alemania)
    Michael SPECHT

    Para mayor información al respecto contactarse con el coordinador del proyecto

    The project aims to develop a low-cost gasification process with integrated in-situ gas cleaning for the conversion of biomass into a product gas with high hydrogen concentration, high heating value, low CO2-content, no nitrogen and low tar/alkali/sulphur concentration in one process step for subsequent power production.

    Multi-Functional Self-Limiting Superconducting Transformer


    Proyecto Específico de Investigación Focalizada (STREP)

    AREVA Transmission & Distribution
    Andrew Richard HYDE

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Development and field testing of a compact HTS hydro power generator with reduced investment costs, lowered environmental impacts and

    strongly Improved performance to reduce the

    price per KWh


    Proyecto Específico de Investigación Focalizada (STREP)

    ALSTOM (Francia)
    John HILL

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Co-processing of upgraded bio-liquids in standard refinery units


    Proyecto Integrado

    VTT Technical Research Centre of Finland (Finlandia)

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Para mayor información al respecto contactarse con el coordinador del proyecto

    Assessing European Capacity for Geological Storage of Carbon Dioxide

    (EU GeoCapacity)

    Proyecto Específico de Investigación Focalizada (STREP)

    Geological Survey of Denmark and Greenland (Dinamarca)
    Niels Peter CHRISTENSEN

    1. Geological Survey of Denmark and Greenland (DK)

    2. University of Sofia "St. Kliment Ohridski" (BG)

    3. University of Zagreb - Faculty of Mining, Geology and Petroleum Engineering (HR)

    4. Czech Geological Survey (CZ)

    5. Institute of Geology at Tallinn University of Technology (EE)

    6. Bureau de Recherches Géologiques et Miniéres (FR)

    7. Institute Francaise du Petrole (FR)

    8. Institute for Geology and Mining Engineering (GR)

    9. Bundesanstalt für Geologie und Rohstoffe (DE)

    10. Eötvös Loránd Geophysical Institute of Hungary (HU)

    11. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (IT)

    12. Latvian Environment, Geology & Meteorology Agency (LV)

    13. Institute of Geology & Geography (LT)

    14. Geological Survey of the Netherlands (NL)

    15. Ecofys (NL)

    16. Mineral and Energy Economy Research Institute - Polish Academy of Sciences (PL)

    17. Geophysical Exploration Company (PL)

    18. National Institute of Marine Geology and Geo-ecology (RO)

    19. Dionyz Stur State Geological Institute (SK)


    21. Instituto Geologico y Minero de Espana (ES)

    22. British Geological Survey (BGS)

    23. EniTecnologie (IT)

    24. ENDESA Generacion (ES)

    25. Vattenfall AB (SE)

    26. Tsinghua University (CN)

    The main objective of the project is to Assess the European Capacity for Geological Storage of Carbon Dioxide (EU GeoCapacity). The project will include full assessments of a number hitherto not covered countries, and updates of previously covered territory. Also a priority is the further development of innovative methods for capacity assessment, economic modelling and site selection criteria. Finally, an important mission is to initiate scientific collaboration with China and possibly other CSLF members. The GeoCapacity project will comprise all or parts of the sedimentary basins suitable for geological storage of CO2 and located within the EU and the Central and Eastern European new member states and candidate countries.

    CO2 Geological Storage: Research into Monitoring and Verification Technology


    Proyecto Integrado

    Netherlands Institute of Applied Scientific Research (Países Bajos)
    Emile ELEWAUT

    1. Netherlands Institute of Applied Scientific Research (NL)

    2. BP (UK)

    3. Statoil (NO)

    4. GeoForschungsZentrum Potsdam (DE)

    5. Gaz de France (FR)

    6. Polish Oil and Gas Company (PL)

    7. Total (FR)

    8. Wintershall (DE)

    9. Vattenfall Aktiebolag Sweden (SE)

    10. Schlumberger Stavanger Research (NO)

    11. Schlumberger Etudes et Production (FR)

    12. Central Mining Institute Poland (PL)

    13. British Geological Survey (UK)

    14. Geological Survey of Denmark and Greenland (DK)

    15. Institut Français du Pétrole (FR)

    16. Sintef Petroleum Research (NO)

    17. Bureau de Recherches Geologiques et Minières (FR)

    18. Imperial College of Science, Technology and Medicine (UK)

    19. Det Norske Veritas (NO)

    20. Quintessa Limited (UK)

    21. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences (PL)

    22. Bundesanstallt für Geowissenschaften und Rohstoffe (DE)

    23. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (IT)

    24. Universita di Roma “La Sapienza” (IT)

    25. Energy research Centre of the Netherlands (NL)

    26. International Energy Agency-Green House Gas

    27. Sonatrach (DZ)

    CO2ReMoVe is a consortium of industrial, research and service organizations with experience in CO2 geological storage. The consortium proposes a range of monitoring techniques, applied over an integrated portfolio of storage sites (including natural analogues), which will develop: 1) Methods for base-line site evaluation. 2) New tools to monitor storage and possible well and surface leakage. 3) New tolls to predict and model long term storage behaviour and risks. 4) A rigorous risk assessment methodology for a variety of sites and time-scales. 5) Guidelines for best practice for the industry, policy makers and regulators

    This will encourage wide-spread application of CO2 geological storage in Europe and neighbouring countries.

    Cultural Influences on Renewable Energy Acceptance and Tools for the development of communication strategies to promotE ACCEPTANCE among key actor groups


    Proyecto Específico de Investigación Focalizada (STREP)

    Energy Research Centre of the Netherlands (Países Bajos)
    Ruth MOURIK

    1. Energy Research Centre of the Netherlands (NL)

    2. Consiglio Nazionale delle Ricerche (IT)

    3. Ecoinstitut Barcelona (ES)

    4. IAE Toulouse (FR)

    5. Icelandic New Energy (IS)

    6. Institute for Renewable Energy Ltd. (PL)

    7. Hungarian Environmental Economics Centre (HU)

    8. National Consumer Research Center (FI)

    9. Institute for Applied Ecology (DE)

    10. University of Salford (UK)

    The objective of this project is to develop a tool that can measure and promote social acceptance of technologies for Renewable Energy Sources and Rational Use of Energy by means of: Assessing the previously developed Socrobust tool for suitability by mapping its potential and limitations to contribute to social acceptance of RES and RUE technologies. Determining the key elements of social acceptance of RES and RUE technologies by assessing the social acceptance of technologies such as hydrogen, biomass, CO2 capture and sequestration (CSS), solar thermodynamics, and wind in several European regions. Enhancement of the Socrobust tool platform into a multi-stakeholder tool, and by designing the necessary instruments and procedures. Validation and deployment of the multi-stakeholder tool in five selected demonstration projects, covering a wide range of RES and RUE technologies as well as various regions in Europe. The preliminarily selected demonstration projects are a hydrogen project in the Nordic countries, a biomass project in the East-European region, Carbon Capture and Sequestration (CCS) in the West-European region, a wind project in Hungary and a solar thermodynamics project in the Mediterranean region. Dissemination of the multi-stakeholder tool to key stakeholders involved in implementation of new RES and RUE technologies.

    Integrated Geophysical Exploration Technologies

    for deep fractured geothermal systems

    Proyecto Específico de Investigación Focalizada (STREP)

    GeoForschungsZentrum Potsdam (Alemania)
    Ernst HUENGES

    1. GeoForschungsZentrum Potsdam (DE)

    2. ENEL Green Power EGP (IT)

    3. Bureau de Recherches Geologiques et Minieres (FR)

    4. Instituto di Geoscienze e Georisorse (IT)

    5. University of Pisa (IT)

    6. Íslenskar Orkurannsóknir (IS)

    7. Center for Renewable Energy (GR)

    8. Freie Universität Berlin (DE)

    9. GEOWATT AG (CH)

    10. Geothermie Neubrandenburg GmbH (DE)

    11. Polish Academy of Sciences (PL)

    The project I-GET is aimed at developing an innovative geothermal exploration approach based on

    advanced geophysical methods. The objective is to improve the detection, prior to drilling, of fluid

    bearing zones in naturally and/or artificially fractured geothermal reservoirs. This new approach will be

    tested in three European geothermal systems with different geological and thermodynamic reservoir

    characteristics: two high enthalpy (metamorphic and volcanic rocks) and two middle/low enthalpy

    geothermal system (sedimentary rocks).

    Compartir con tus amigos:
    1   2   3   4

    La base de datos está protegida por derechos de autor © 2019
    enviar mensaje

        Página principal