Para otros usos de este término, véase Color



Descargar 2,06 Mb.
Página1/22
Fecha de conversión20.02.2017
Tamaño2,06 Mb.
  1   2   3   4   5   6   7   8   9   ...   22
Color

Para otros usos de este término, véase Color (desambiguación).

El color es un aspecto importante en la pintura.

El color es una percepción visual que se genera en el cerebro al interpretar las señales nerviosas que le envían los foto receptores de la retina del ojo y que a su vez interpretan y distinguen las distintas longitudes de onda que captan de la parte visible del espectro electromagnético.

Es un fenómeno físico-químico asociado a las innumerables combinaciones de la luz, relacionado con las diferentes longitudes de onda en la zona visible del espectro electromagnético, que perciben los humanos y otros animales a través de los órganos de la visión, como una sensación que nos permite diferenciar los objetos con mayor precisión.

Todo cuerpo iluminado absorbe una parte de las ondas electromagnéticas y refleja las restantes. Las ondas reflejadas son captadas por el ojo e interpretadas en el cerebro como colores según las longitudes de ondas correspondientes. El ojo humano sólo percibe las longitudes de onda cuando la iluminación es abundante. A diferentes longitudes de onda captadas en el ojo corresponden distintos colores en el cerebro.

Con poca luz se ve en blanco y negro. En la denominada síntesis aditiva (comúnmente llamada "superposición de colores luz") el color blanco resulta de la superposición de todos los colores, mientras que el negro es la ausencia de color. En la síntesis sustractiva (mezcla de pinturas, tintes, tintas y colorantes naturales para crear colores) el blanco solo se da bajo la ausencia de pigmentos y utilizando un soporte de ese color y el negro es resultado de la superposición de los colores cian, magenta y amarillo.

La luz blanca puede ser descompuesta en todos los colores (espectro) por medio de un prisma. En la naturaleza esta descomposición da lugar al arco iris.

La formación de la visión humana del color

En la visión humana, los conos captan la luz en la retina del ojo. Hay tres tipos de conos (denominados en inglés S, M, y L), cada uno de ellos capta solamente las longitudes de onda señaladas en el gráfico. Transformadas en el cerebro se corresponden aproximadamente con el azul, verde y rojo. Los bastones captan las longitudes de onda señaladas en la curva R.

La visión es un sentido que consiste en la habilidad de detectar la luz y de interpretarla. La visión es propia de los animales teniendo éstos un sistema dedicado a ella llamado sistema visual. La primera parte del sistema visual se encarga de formar la imagen óptica del estímulo visual en la retina (sistema óptico), donde sus células son las responsables de procesar la información. Las primeras en intervenir son los fotorreceptores, los cuales capturan la luz que incide sobre ellos. Los hay de dos tipos: los conos y los bastones. Otras células de la retina se encargan de transformar dicha luz en impulsos electroquímicos y en transportarlos hasta el nervio óptico. Desde allí, se proyectan al cerebro. En el cerebro se realiza el proceso de formar los colores y reconstruir las distancias, movimientos y formas de los objetos observados.

Las células sensoriales de la retina reaccionan de forma distinta a la luz y a su longitud de onda. Los bastones se activan en la oscuridad, y sólo permiten distinguir el negro, el blanco y los distintos grises. Los conos sólo se activan cuando los niveles de iluminación son suficientemente elevados. Los conos captan radiaciones electromagnéticas, rayos de luz, que más tarde darán lugar a impresiones ópticas. Los conos son acumuladores de cuantos de luz, que transforman esta información en impulsos eléctricos del órgano de la vista. Hay tres clases de conos, cada uno de ellos posee un fotopigmento que sólo detecta unas longitudes de onda concretas, aproximadamente las longitudes de onda que transformadas en el cerebro se corresponden a los colores azul, rojo y verde. Los tres grupos de conos mezclados permiten formar el espectro completo de luz visible.

Esta actividad retiniana ya es cerebral, puesto que los fotorreceptores, aunque simples, son células neuronales. La información de los conos y bastones es procesada por otras células situadas inmediatamente a continuación y conectadas detrás de ellos (horizontales, bipolares, amacrinas y ganglionares). El procesamiento en estas células es el origen de dos dimensiones o canales de pares antagónicos cromáticos: ROJO -VERDE y AZUL - AMARILLO y de una dimensión acromática o canal de claroscuro. Dicho de otra manera, estas células se excitan o inhiben ante la mayor intensidad de la señal del ROJO frente al VERDE y del AZUL frente a la SUMA DE ROJO y VERDE, generando además un trayecto acromático de información relativa a la luminosidad.

La información de este procesamiento se traslada, a través del nervio óptico, a los núcleos geniculados laterales (situados a izquierda y derecha del tálamo), donde la actividad neuronal se específica respecto a la sugerencia del color y del claroscuro. Esta información precisa se transfiere al córtex visual por las vías denominadas radiaciones ópticas. La percepción del color es consecuencia de la actividad de las neuronas complejas del área de la corteza visual V4/V8, específica para el color. Esta actividad determina que las cualidades vivenciales de la visión del color puedan ser referidas mediante los atributos: luminosidad, tono y saturación.

Se denomina visión fotópica a la que tiene lugar con buenas condiciones de iluminación. Esta visión posibilita la correcta interpretación del color por el cerebro.

Muchos mamíferos de origen africano, como el ser humano, comparten las características genéticas descritas: por eso se dice que tenemos percepción tricrómica. Sin embargo, los mamíferos de origen sudamericano únicamente tienen dos genes para la percepción del color. Existen pruebas que confirman que la aparición de este tercer gen fue debida a una mutación que duplicó uno de los dos originales.

En el reino animal los mamíferos no suelen diferenciar bien los colores, las aves en cambio, sí; aunque suelen tener preferencia por los colores rojizos. Los insectos, por el contrario, suelen tener una mejor percepción de los azules e incluso ultravioletas. Por regla general los animales nocturnos ven en blanco y negro. Algunas enfermedades como el daltonismo o la acromatopsia impiden ver bien los colores. Véase también:Percepción del color

[editar]La física del color

[editar]El espectro visible por los humanos

Artículo principal: Espectro visible

El espectro electromagnético está constituido por todos los posibles niveles de energía de la luz. Hablar de energía es equivalente a hablar delongitud de onda; por ello, el espectro electromagnético abarca todas las longitudes de onda que la luz puede tener. De todo el espectro, la porción que el ser humano es capaz de percibir es muy pequeña en comparación con todas las existentes. Esta región, denominada espectro visible, comprende longitudes de onda desde los 380 nm hasta los 780 nm ( 1nm = 1 nanómetro = 0,000001 mm). La luz de cada una de estas longitudes de onda es percibida en el cerebro humano como un color diferente. Por eso, en la descomposición de la luz blanca en todas sus longitudes de onda, mediante un prisma o por la lluvia en el arco iris, el cerebro percibe todos los colores.

Por tanto, del Espectro visible, que es la parte del espectro electromagnético de la luz solar que podemos notar, cada longitud de onda es percibida en el cerebro como un color diferente.

Newton uso por primera vez la palabra espectro (del latín, "apariencia" o "aparición") en 1671 al describir sus experimentos en óptica. Newton observó que cuando un estrecho haz de luz solar incide sobre un prisma de vidrio triangular con un ángulo, una parte se refleja y otra pasa a través del vidrio y se desintegra en diferentes bandas de colores. También Newton hizo converger esos mismos rayos de color en una segunda lente para formar nuevamente luz blanca. Demostró que la luz solar tiene todos los colores del arco iris.

Cuando llueve y luce el sol, cada gota de lluvia se comporta de igual manera que el prisma de Newton y de la unión de millones de gotas de agua se forma el fenómeno del arco iris.1

A pesar que el espectro es continuo y por lo tanto no hay cantidades vacías entre uno y otro color, se puede establecer la siguiente aproximación:2





Color

Longitud de onda

violeta

~ 380-450 nm

azul

~ 450-495 nm

verde

~ 495-570 nm

amarillo

~ 570–590 nm

naranja

~ 590–620 nm

rojo

~ 620–750 nm

[editar]La reflexión en las superficies: colores sustractivos

Cuando la luz incide sobre un objeto, su superficie absorbe ciertas longitudes de onda y refleja otras. Sólo las longitudes de onda reflejadas podrán ser vistas por el ojo y por tanto en el cerebro sólo se percibirán esos colores. Es un proceso diferente a luz natural que tiene todas las longitudes de onda, allí todo el proceso nada más tiene que ver con luz, ahora en los colores que percibimos en un objeto hay que tener en cuenta también el objeto en si, que tiene capacidad de absorber ciertas longitudes de onda y reflejar las demás.

Consideremos una manzana "roja". Cuando es vista bajo una luz blanca, parece roja. Pero esto no significa que emita luz roja, que sería el caso una síntesis aditiva. Si lo hiciese, seríamos capaces de verla en la oscuridad. En lugar de eso, absorbe algunas de las longitudes de onda que componen la luz blanca, reflejando sólo aquellas que el humano ve como rojas. Los humanos ven la manzana roja debido al funcionamiento particular de su ojo y a la interpretación que hace el cerebro de la información que le llega del ojo.

[editar]Pigmentos y tintes



Una gran cantidad de ondas (colores) inciden en el pigmento, este absorbe la luz verde y roja, y refleja sólo la azul, creando el color azul.








Pigmento natural azul marinoen forma de polvo.



Un pigmento o un tinte es un material que cambia el color de la luz querefleja debido a que selectivamente absorben ciertas ondas luminosas. Laluz blanca es aproximadamente igual a una mezcla de todo el espectro visible de luz. Cuando esta luz se encuentra con un pigmento, algunas ondas son absorbidas por los enlaces químicos y sustituyentes del pigmento, mientras otras son reflejadas. Este nuevo espectro de luz reflejado crea la apariencia del color. Por ejemplo, un pigmento azul marino refleja la luz azul, y absorbe los demás colores.

La apariencia de los pigmentos o tintes está íntimamente ligada a la luz que reciben. La luz solar tiene una temperatura de color alta y un espectro relativamente uniforme, y es considerada un estándar para la luz blanca. La luz artificial, por su parte, tiende a tener grandes variaciones en algunas partes de su espectro. Vistos bajo estas condiciones, los pigmentos o tintes lucen de diferentes colores.

Los tintes sirven para colorear materiales, como los tejidos, mientras que los pigmentos sirven para cubrir una superficie, como puede ser un cuadro. Desde las glaciaciones los humanos empleaban plantas y partes de animales para lograr tintes naturales con los que coloreaban sus tejidos. Luego los pintores han preparado sus propios pigmentos. Desde 1856 aparecieron tintes sintéticos.3

[editar]Síntesis aditiva: colores primarios





Mezcla aditiva de colores primarios.





Ejemplo con focos luminosos de mezcla aditiva de colores primarios.



Artículo principal: Síntesis aditiva de color

Se llama síntesis aditiva a obtener un color de luz determinado por la suma de otros colores.Thomas Young partiendo del descubrimiento de Newton que la suma de los colores del espectro visible formaba luz blanca realizó un experimento con linternas con los seis colores del espectro visible, proyectando estos focos y superponiéndolos llegó a un nuevo descubrimiento: para formar los seis colores del espectro sólo hacían falta tres colores y además sumando los tres se formaba luz blanca.4

El proceso de reproducción aditiva normalmente utiliza luz rojaverde y azul para producir el resto de colores. Combinando uno de estos colores primarios con otro en proporciones iguales produce los colores aditivos secundarios, más claros que los anteriores: cianmagenta y amarillo. Variando la intensidad de cada luz de color finalmente deja ver el espectro completo de estas tres luces. La ausencia de los tres da el negro, y la suma de los tres da el blanco. Estos tres colores se corresponden con los tres picos de sensibilidad de los tres sensores de color en nuestros ojos.

Los colores primarios no son una propiedad fundamental de la luz, sino un concepto biológico, basado en la respuesta fisiológica del ojo humano a la luz. Un ojo humano normal sólo contiene tres tipos de receptores, llamados conos. Estos responden a longitudes de onda específicas de luz roja, verde y azul. Las personas y los miembros de otras especies que tienen estos tres tipos de receptores se llaman tricrómatas. Aunque la sensibilidad máxima de los conos no se produce exactamente en las frecuencias roja, verde y azul, son los colores que se eligen como primarios, porque con ellos es posible estimular los tres receptores de color de manera casi independiente, proporcionando un amplio gamut. Para generar rangos de color óptimos para otras especies aparte de los seres humanos se tendrían que usar otros colores primarios aditivos. Por ejemplo, para las especies conocidas como tetracrómatas, con cuatro receptores de color distintos, se utilizarían cuatro colores primarios (como los humanos sólo pueden ver hasta 400 nanómetros (violeta), pero los tetracrómatas pueden ver parte del ultravioleta, hasta los 300 nanómetros aproximadamente, este cuarto color primario estaría situado en este rango y probablemente sería un violeta espectral puro, en lugar del violeta que vemos). Muchas aves y marsupiales son tetracrómatas, y se ha sugerido que algunas mujeres nacen también tetracrómatas,5 6 con un receptor extra para el amarillo. Por otro lado, la mayoría de los mamíferos tienen sólo dos tipos de receptor de color y por lo tanto son dicrómatas; para ellos, sólo hay dos colores primarios.



Las televisiones y los monitores de ordenador son las aplicaciones prácticas más comunes de la síntesis aditiva.

  

 

  







Rojo

+

Verde

=

Amarillo










Verde

+

Azul

=

Cian










Azul

+

Rojo

=

Magenta




Azul

+

Rojo

+

Verde

=

Blanco




 







[editar]Síntesis sustractiva: colores primarios



Mezcla sustractiva de colores primarios.



Artículo principal: Síntesis sustractiva de color

Todo lo que no es color aditivo es color sustractivo. En otras palabras, todo lo que no es luz directa es luz reflejada en un objeto, la primera se basa en la síntesis aditiva de color, la segunda en la síntesis sustractiva de color.

La síntesis sustractiva explica la teoría de la mezcla de pigmentos y tintes para crear color. El color que parece que tiene un determinado objeto depende de qué partes del espectro electromagnéticoson reflejadas por él, o dicho a la inversa, qué partes del espectro son absorbidas.

Se llama síntesis sustractiva porque a la energía de radiación se le sustrae algo por absorción. En la síntesis sustractiva el color de partida siempre suele ser el color acromático blanco, el que aporta la luz (en el caso de una fotografía el papel blanco, si hablamos de un cuadro es el lienzo blanco), es un elemento imprescindible para que las capas de color puedan poner en juego sus capacidades de absorción. En la síntesis sustractiva los colores primarios son el amarillo, el magenta y el cian, cada uno de estos colores tiene la misión de absorber el campo de radiación de cada tipo de conos. Actúan como filtros, el amarillo, no deja pasar las ondas que forman el azul, el magenta no deja pasar el verde y el cian no permite pasar al rojo.7

En los sistemas de reproducción de color según la síntesis sustractiva, la cantidad de color de cada filtro puede variar del 0% al 100%. Cuanto mayor es la cantidad de color mayor es la absorción y menos la parte reflejada, si de un color no existe nada, de ese campo de radiaciones pasará todo. Por ello, a cada capa de color le corresponde modular un color sensación del órgano de la vista: al amarillo le corresponde modular el azul, al magenta el verde y al cian el rojo.7

Así mezclando sobre un papel blanco cian al 100% y magenta al 100%, no dejaran pasar el color rojo y el verde con lo que el resultado es el color azul. De igual manera el magenta y el amarillo formaran el rojo, mientras el cian y el amarillo forman el verde. El azul, verde y rojo son colores secundarios en la síntesis sustractiva y son más oscuros que los primarios. En las mezclas sustractivas se parte de tres primarios claros y según se mezcla los nuevos colores se van oscureciendo, al mezclar estamos restando luz. Los tres primarios mezclados dan el negro.8



La aplicación práctica de la síntesis sustractiva es la impresión a color y los cuadros de pintura.

  

 

  







Cian

+

Magenta

=

Azul










Magenta

+

Amarillo

=

Rojo










Cian

+

Amarillo

=

Verde




Cian

+

Amarillo

+

Magenta

=

Negro




 







En la impresión en color, las tintas que se usan principalmente como primarios son el cianmagenta y amarillo. Como se ha dicho, el Cian es el opuesto al rojo, lo que significa que actúa como un filtro que absorbe dicho color. La cantidad de cian aplicada a un papel controlará cuanto rojo mostrará. Magenta es el opuesto al verde y amarillo el opuesto al azul. Con este conocimiento se puede afirmar que hay infinitas combinaciones posibles de colores. Así es como las reproducciones de ilustraciones son producidas en grandes cantidades, aunque por varias razones también suele usarse una tinta negra. Esta mezcla de cian, magenta, amarillo y negro se llama modelo de color CMYK. CMYK es un ejemplo de espacio de colores sustractivos, o una gama entera de espacios de color.

El origen de los nombres magenta y cian procede de las películas de color inventadas en 1936 por Agfa y Kodak. El color se reproducía mediante un sistema de tres películas, una sensible al amarillo, otro sensible a un rojo púrpura y una tercera a un azul claro. Estas casas comerciales decidieron dar el nombre de magenta al rojo púrpura y cian al azul claro. Estos nombres fueron admitidos como definitivos en la década de 1950 en las normas DIN que definieron los colores básicos de impresión.9

[editar]Colores elementales

Los ocho colores elementales corresponden a las ocho posibilidades extremas de percepción del órgano de la vista. Las posibilidades últimas de sensibilidad de color que es capaz de captar el ojo humano. Estos resultan de las combinaciones que pueden realizar los tres tipos de conos del ojo, o lo que es lo mismo las posibilidades que ofrecen de combinarse los tres primarios. Estas ocho posibilidades son los tres colores primarios, los tres secundarios que resultan de la combinación de dos primarios, más los dos colores acromáticos, el blanco que es percibido como la combinación de los tres primarios (síntesis aditiva: colores luz) y el negro es la ausencia de los tres.10



  

 

  

Rojo

Verde

Azul

Amarillo

Cian

Magenta

Blanco

Negro




 










Por tanto colores tradicionales como el violeta, el naranja o el marrón no son colores elementales.
  1   2   3   4   5   6   7   8   9   ...   22


La base de datos está protegida por derechos de autor ©absta.info 2016
enviar mensaje

    Página principal